T
Texas Instruments
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
SN74SSTV16859200-MHz, 13-bit to 26-bit registered buffer with SSTL_2 inputs and outputs | Specialty Logic | 4 | Active | This 13-bit to 26-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are SSTL_2, Class II compatible.
The SN74SSTV16859 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.
This 13-bit to 26-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are SSTL_2, Class II compatible.
The SN74SSTV16859 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up. |
SN74SSTVF1685714-bit registered buffer with SSTL_2 inputs and outputs | Specialty Logic | 2 | Active | This 14-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_2 Class I specifications.
The SN74SSTVF16857 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset, and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.
This 14-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_2 Class I specifications.
The SN74SSTVF16857 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset, and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up. |
SN74SSTVF16859500-MHz, 13-bit to 26-bit registered buffer with SSTL_2 inputs and outputs | Logic | 3 | Active | This 13-bit to 26-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are edge-controlled LVCMOS circuits optimized for unterminated DIMM loads.
The SN74SSTVF16859 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.
This 13-bit to 26-bit registered buffer is designed for 2.3-V to 2.7-V VCCoperation.
All inputs are SSTL_2, except the LVCMOS reset (RESET)\ input. All outputs are edge-controlled LVCMOS circuits optimized for unterminated DIMM loads.
The SN74SSTVF16859 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ input always must be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up. |
SN74TVC16222A5-V, 22-channel voltage clamp | Integrated Circuits (ICs) | 4 | Obsolete | The SN74TVC16222A provides 23 parallel NMOS pass transistors with a common gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a 22-bit switch, with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. (SeeApplication Informationin this data sheet.)
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can be used as the reference transistor. Because, within the device, the characteristics from transistor to transistor are equal, the maximum output high-state voltage (VOH) is approximately the reference voltage (VREF), with minimal deviation from one output to another. This is a benefit of the TVC solution over discrete devices. Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET.
The SN74TVC16222A provides 23 parallel NMOS pass transistors with a common gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a 22-bit switch, with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. (SeeApplication Informationin this data sheet.)
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can be used as the reference transistor. Because, within the device, the characteristics from transistor to transistor are equal, the maximum output high-state voltage (VOH) is approximately the reference voltage (VREF), with minimal deviation from one output to another. This is a benefit of the TVC solution over discrete devices. Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET. |
SN74TVC30106.5-V, 1:1 (SPST), 10-channel voltage clamp | Integrated Circuits (ICs) | 6 | Active | The SN74TVC3010 provides 11 parallel NMOS pass transistors with a common gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a 10-bit switch with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. (See Application Information in this data sheet.)
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can be used as the reference transistor. Since, within the device, the characteristics from transistor to transistor are equal, the maximum output high-state voltage (VOH) is approximately the reference voltage (VREF), with minimal deviation from one output to another. This is a large benefit of the TVC solution over discrete devices. Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET.
The SN74TVC3010 provides 11 parallel NMOS pass transistors with a common gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a 10-bit switch with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. (See Application Information in this data sheet.)
All of the transistors in the TVC array have the same electrical characteristics; therefore, any one of them can be used as the reference transistor. Since, within the device, the characteristics from transistor to transistor are equal, the maximum output high-state voltage (VOH) is approximately the reference voltage (VREF), with minimal deviation from one output to another. This is a large benefit of the TVC solution over discrete devices. Because the fabrication of the transistors is symmetrical, either port connection of each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET. |
SN74TVC33065-V dual voltage clamp | Integrated Circuits (ICs) | 2 | Active | The SN74TVC3306 device provides three parallel NMOS pass transistors with a common unbuffered gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a dual switch, with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots.
The SN74TVC3306 device provides three parallel NMOS pass transistors with a common unbuffered gate. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device can be used as a dual switch, with the gates cascaded together to a reference transistor. The low-voltage side of each pass transistor is limited to a voltage set by the reference transistor. This is done to protect components with inputs that are sensitive to high-state voltage-level overshoots. |
SN74V215512 x 18 Synchronous FIFO Memory | Integrated Circuits (ICs) | 3 | Active | The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C.
The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C. |
SN74V2352048 x 18 Synchronous FIFO Memory | FIFOs Memory | 4 | Active | The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C.
The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C. |
SN74V2454096 x 18 Synchronous FIFO Memory | FIFOs Memory | 3 | Active | The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C.
The SN74V215, SN74V225, SN74V235, and SN74V245 are very high-speed, low-power CMOS clocked first-in first-out (FIFO) memories. They support clock frequencies up to 133 MHz and have read-access times as fast as 5 ns. These DSP-Sync™ FIFO memories feature read and write controls for use in applications such as DSP-to-processor communication, DSP-to-analog front end (AFE) buffering, network, video, and data communications.
These are synchronous FIFOs, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between DSPs, microprocessors, and/or buses controlled by a synchronous interface. An output-enable (OE)\ input controls the 3-state output.
The synchronous FIFOs have two fixed flags, empty flag/output ready (EF\/OR\) and full flag/input ready (FF\/IR\), and two programmable flags, almost-empty (PAE)\ and almost-full (PAF)\. The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the load pin (LD)\. A half-full flag (HF)\ is available when the FIFO is used in a single-device configuration.
Two timing modes of operation are possible with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A read enable (REN)\ does not have to be asserted for accessing the first word.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
These devices are depth expandable, using a daisy-chain technique or FWFT mode. The XI\ and XO\ pins are used to expand the FIFOs. In depth-expansion configuration, first load (FL)\ is grounded on the first device and set to high for all other devices in the daisy chain.
The SN74V215, SN74V225, SN74V235, and SN74V245 are characterized for operation from 0°C to 70°C. |
SN74V263-EPEnhanced Product 8192 X 18 Synchronous Fifo Memory | Logic | 5 | Active | The SN74V263, SN74V273, SN74V283, and SN74V293 are exceptionally deep, high-speed, CMOS first-in first-out (FIFO) memories with clocked read and write controls and a flexible bus-matching ×9/×18 data flow.
There is flexible ×9/×18 bus matching on both read and write ports.
The period required by the retransmit operation is fixed and short.
The first-word data-latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short.
These FIFOs are particularly appropriate for network, video, telecommunications, data communications, and other applications that need to buffer large amounts of data and match buses of unequal sizes.
Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either an 18-bit or 9-bit width, as determined by the state of external control pins’ input width (IW) and output width (OW) during the master-reset cycle.
The input port is controlled by write-clock (WCLK) and write-enable (WEN)\ inputs. Data is written into the FIFO on every rising edge of WCLK when WEN\ is asserted. The output port is controlled by read-clock (RCLK) and read-enable (REN\) inputs. Data is read from the FIFO on every rising edge of RCLK when REN\ is asserted. An output-enable (OE\) input is provided for 3-state control of the outputs.
The frequencies of both the RCLK and the WCLK signals can vary from 0 to fMAX, with complete independence. There are no restrictions on the frequency of one clock input with respect to the other.
There are two possible timing modes of operation with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. REN\ need not be asserted for accessing the first word. However, subsequent words written to the FIFO do require a low on REN\ for access. The state of the FWFT/SI input during master reset determines the timing mode in use.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
For applications requiring more data-storage capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e., the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.
These FIFOs have five flag pins: empty flag or output ready (EF\/OR\), full flag or input ready (FF\/IR\), half-full flag (HF)\, programmable almost-empty flag (PAE)\, and programmable almost-full flag (PAF)\. The IR\ and OR\ functions are selected in FWFT mode. The EF\ and FF\ functions are selected in standard mode. HF\, PAE\, and PAF\ always are available for use, regardless of timing mode.
PAE\ and PAF\ can be programmed independently to switch at any point in memory. Programmable offsets determine the flag-switching threshold and can be loaded by parallel or serial methods. Eight default offset settings also are provided, so that PAE\ can be set to switch at a predefined number of locations from the empty boundary. The PAF\ threshold also can be set at similar predefined values from the full boundary. The default offset values are set during master reset by the state of FSEL0, FSEL1, and LD\.
For serial programming, SEN\, together with LD\, loads the offset registers via the serial input (SI) on each rising edge of WCLK. For parallel programming, WEN\, together with LD\, loads the offset registers via Dn on each rising edge of WCLK. REN\, together with LD\, can read the offsets in parallel from Qn on each rising edge of RCLK, regardless of whether serial or parallel offset loading has been selected.
Also, the timing modes of PAE\ and PAF\ outputs can be selected. Timing modes can be set to be either asynchronous or synchronous for PAE\ and PAF\.
If the asynchronous PAE\/PAF\ configuration is selected, PAE\ is asserted low on the low-to-high transition of RCLK. PAE\ is reset to high on the low-to-high transition of WCLK. Similarly, PAF\ is asserted low on the low-to-high transition of WCLK, and PAF\ is reset to high on the low-to-high transition of RCLK.
If the synchronous PAE\/PAF\ configuration is selected , PAE\ is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF\ is asserted and updated on the rising edge of WCLK only and not RCLK. The desired mode is configured during master reset by the state of the programmable-flag mode (PFM) pin.
The retransmit function allows data to be reread from the FIFO more than once. A low on the RT\ input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. Zero-latency retransmit timing mode can be selected using the retransmit timing mode (RM). During master reset, a low on RM selects zero-latency retransmit. A high on RM during master reset selects normal latency.
If zero-latency retransmit operation is selected, the first data word to be retransmitted is placed on the output register with respect to the same RCLK edge that initiated the retransmit, if RT\ is low.
During master reset (MRS)\, the functions for all the operating modes are programmed. These include FWFT or standard timing, input bus width, output bus width, big endian or little endian, retransmit mode, programmable-flag operating and programming method, programmable-flag default offsets, and interspersed parity select. The read and write pointers are set to the first location of the FIFO. Then, based on the selected timing mode, EF\ is set low or OR\ is set high and FF\ is set high or IR\ is set low. Also, PAE\ is set low, PAF\ is set high, and HF\ is set high. The Q outputs are set low.
Partial reset (PRS\) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable-flag programming method, default or programmed offset settings, input and output bus widths, big endian/little endian, interspersed parity select, and retransmit mode (existing before partial reset is asserted) remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS\ is useful for resetting a device in mid-operation when reprogramming programmable flags and other functions would be undesirable.
A big-endian/little-endian data word format is provided. This function is useful when data is written into the FIFO in long-word (×18) format and read out of the FIFO in small-word (×9) format. If big-endian mode is selected, the most significant byte (MSB) (word) of the long word written into the FIFO is read out of the FIFO first, followed by the least-significant byte (LSB). If little-endian format is selected, the LSB of the long word written into the FIFO is read out first, followed by the MSB. The mode desired is configured during master reset by the state of the big-endian/little-endian (BE)\ pin.
The interspersed/noninterspersed parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0–Dn) when programming the flag offsets. If interspersed-parity mode is selected, the FIFO assumes that the parity bit is located in bit position D8 during the parallel programming of the flag offsets. If noninterspersed-parity mode is selected, D8 is assumed to be a valid bit and D16 and D17 are ignored. IP mode is selected during master reset by the state of the IP input pin. This mode is relevant only when the input width is set to ×18 mode.
The SN74V263, SN74V273, SN74V283, and SN74V293 are fabricated using TI’s high-speed submicron CMOS technology.
For more information on this device family, see the following application reports:
The SN74V263, SN74V273, SN74V283, and SN74V293 are exceptionally deep, high-speed, CMOS first-in first-out (FIFO) memories with clocked read and write controls and a flexible bus-matching ×9/×18 data flow.
There is flexible ×9/×18 bus matching on both read and write ports.
The period required by the retransmit operation is fixed and short.
The first-word data-latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short.
These FIFOs are particularly appropriate for network, video, telecommunications, data communications, and other applications that need to buffer large amounts of data and match buses of unequal sizes.
Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either an 18-bit or 9-bit width, as determined by the state of external control pins’ input width (IW) and output width (OW) during the master-reset cycle.
The input port is controlled by write-clock (WCLK) and write-enable (WEN)\ inputs. Data is written into the FIFO on every rising edge of WCLK when WEN\ is asserted. The output port is controlled by read-clock (RCLK) and read-enable (REN\) inputs. Data is read from the FIFO on every rising edge of RCLK when REN\ is asserted. An output-enable (OE\) input is provided for 3-state control of the outputs.
The frequencies of both the RCLK and the WCLK signals can vary from 0 to fMAX, with complete independence. There are no restrictions on the frequency of one clock input with respect to the other.
There are two possible timing modes of operation with these devices: first-word fall-through (FWFT) mode and standard mode.
In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. REN\ need not be asserted for accessing the first word. However, subsequent words written to the FIFO do require a low on REN\ for access. The state of the FWFT/SI input during master reset determines the timing mode in use.
In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.
For applications requiring more data-storage capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e., the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.
These FIFOs have five flag pins: empty flag or output ready (EF\/OR\), full flag or input ready (FF\/IR\), half-full flag (HF)\, programmable almost-empty flag (PAE)\, and programmable almost-full flag (PAF)\. The IR\ and OR\ functions are selected in FWFT mode. The EF\ and FF\ functions are selected in standard mode. HF\, PAE\, and PAF\ always are available for use, regardless of timing mode.
PAE\ and PAF\ can be programmed independently to switch at any point in memory. Programmable offsets determine the flag-switching threshold and can be loaded by parallel or serial methods. Eight default offset settings also are provided, so that PAE\ can be set to switch at a predefined number of locations from the empty boundary. The PAF\ threshold also can be set at similar predefined values from the full boundary. The default offset values are set during master reset by the state of FSEL0, FSEL1, and LD\.
For serial programming, SEN\, together with LD\, loads the offset registers via the serial input (SI) on each rising edge of WCLK. For parallel programming, WEN\, together with LD\, loads the offset registers via Dn on each rising edge of WCLK. REN\, together with LD\, can read the offsets in parallel from Qn on each rising edge of RCLK, regardless of whether serial or parallel offset loading has been selected.
Also, the timing modes of PAE\ and PAF\ outputs can be selected. Timing modes can be set to be either asynchronous or synchronous for PAE\ and PAF\.
If the asynchronous PAE\/PAF\ configuration is selected, PAE\ is asserted low on the low-to-high transition of RCLK. PAE\ is reset to high on the low-to-high transition of WCLK. Similarly, PAF\ is asserted low on the low-to-high transition of WCLK, and PAF\ is reset to high on the low-to-high transition of RCLK.
If the synchronous PAE\/PAF\ configuration is selected , PAE\ is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF\ is asserted and updated on the rising edge of WCLK only and not RCLK. The desired mode is configured during master reset by the state of the programmable-flag mode (PFM) pin.
The retransmit function allows data to be reread from the FIFO more than once. A low on the RT\ input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. Zero-latency retransmit timing mode can be selected using the retransmit timing mode (RM). During master reset, a low on RM selects zero-latency retransmit. A high on RM during master reset selects normal latency.
If zero-latency retransmit operation is selected, the first data word to be retransmitted is placed on the output register with respect to the same RCLK edge that initiated the retransmit, if RT\ is low.
During master reset (MRS)\, the functions for all the operating modes are programmed. These include FWFT or standard timing, input bus width, output bus width, big endian or little endian, retransmit mode, programmable-flag operating and programming method, programmable-flag default offsets, and interspersed parity select. The read and write pointers are set to the first location of the FIFO. Then, based on the selected timing mode, EF\ is set low or OR\ is set high and FF\ is set high or IR\ is set low. Also, PAE\ is set low, PAF\ is set high, and HF\ is set high. The Q outputs are set low.
Partial reset (PRS\) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable-flag programming method, default or programmed offset settings, input and output bus widths, big endian/little endian, interspersed parity select, and retransmit mode (existing before partial reset is asserted) remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS\ is useful for resetting a device in mid-operation when reprogramming programmable flags and other functions would be undesirable.
A big-endian/little-endian data word format is provided. This function is useful when data is written into the FIFO in long-word (×18) format and read out of the FIFO in small-word (×9) format. If big-endian mode is selected, the most significant byte (MSB) (word) of the long word written into the FIFO is read out of the FIFO first, followed by the least-significant byte (LSB). If little-endian format is selected, the LSB of the long word written into the FIFO is read out first, followed by the MSB. The mode desired is configured during master reset by the state of the big-endian/little-endian (BE)\ pin.
The interspersed/noninterspersed parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0–Dn) when programming the flag offsets. If interspersed-parity mode is selected, the FIFO assumes that the parity bit is located in bit position D8 during the parallel programming of the flag offsets. If noninterspersed-parity mode is selected, D8 is assumed to be a valid bit and D16 and D17 are ignored. IP mode is selected during master reset by the state of the IP input pin. This mode is relevant only when the input width is set to ×18 mode.
The SN74V263, SN74V273, SN74V283, and SN74V293 are fabricated using TI’s high-speed submicron CMOS technology.
For more information on this device family, see the following application reports: |
| Part | Category | Description |
|---|---|---|
Texas Instruments | Integrated Circuits (ICs) | BUS DRIVER, BCT/FBT SERIES |
Texas Instruments | Integrated Circuits (ICs) | 12BIT 3.3V~3.6V 210MHZ PARALLEL VQFN-48-EP(7X7) ANALOG TO DIGITAL CONVERTERS (ADC) ROHS |
Texas Instruments | Integrated Circuits (ICs) | TMX320DRE311 179PIN UBGA 200MHZ |
Texas Instruments TPS61040DRVTG4Unknown | Integrated Circuits (ICs) | IC LED DRV RGLTR PWM 350MA 6WSON |
Texas Instruments LP3876ET-2.5Obsolete | Integrated Circuits (ICs) | IC REG LINEAR 2.5V 3A TO220-5 |
Texas Instruments LMS1585ACSX-ADJObsolete | Integrated Circuits (ICs) | IC REG LIN POS ADJ 5A DDPAK |
Texas Instruments INA111APG4Obsolete | Integrated Circuits (ICs) | IC INST AMP 1 CIRCUIT 8DIP |
Texas Instruments | Integrated Circuits (ICs) | AUTOMOTIVE, QUAD 36V 1.2MHZ OPERATIONAL AMPLIFIER |
Texas Instruments OPA340NA/3KG4Unknown | Integrated Circuits (ICs) | IC OPAMP GP 1 CIRCUIT SOT23-5 |
Texas Instruments PT5112AObsolete | Power Supplies - Board Mount | DC DC CONVERTER 8V 8W |