Zenode.ai Logo
Beta
R6020ENZ4C13
Discrete Semiconductor Products

SCS220AEGC11

Active
Rohm Semiconductor

SILICON CARBIDE SCHOTTKY DIODE, SINGLE, 650 V, 20 A, 31 NC, TO-247

Deep-Dive with AI

Search across all available documentation for this part.

R6020ENZ4C13
Discrete Semiconductor Products

SCS220AEGC11

Active
Rohm Semiconductor

SILICON CARBIDE SCHOTTKY DIODE, SINGLE, 650 V, 20 A, 31 NC, TO-247

Technical Specifications

Parameters and characteristics for this part

SpecificationSCS220AEGC11
Capacitance @ Vr, F730 pF
Current - Reverse Leakage @ Vr400 µA
Mounting TypeThrough Hole
Operating Temperature - Junction175 °C
Package / CaseTO-247-3
Reverse Recovery Time (trr)0 ns
Speed500 mA
Supplier Device PackageTO-247
TechnologySiC (Silicon Carbide) Schottky
Voltage - DC Reverse (Vr) (Max) [Max]650 V
Voltage - Forward (Vf) (Max) @ If [Max]1.55 V

SCS220 Series

1200V, 20A, 3-pin THD, Silicon-carbide (SiC) SBD for Automotive

PartCapacitance @ Vr, FVoltage - DC Reverse (Vr) (Max) [Max]Current - Reverse Leakage @ VrOperating Temperature - Junction [Max]TechnologyReverse Recovery Time (trr)Voltage - Forward (Vf) (Max) @ If [Max]Package / CaseMounting TypeSupplier Device PackageSpeedCurrent - Average Rectified (Io) (per Diode)Voltage - Forward (Vf) (Max) @ IfDiode ConfigurationOperating Temperature - JunctionGradeQualification
ROHM SCS212AJHRTLL
Rohm Semiconductor
730 pF
650 V
400 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
1.55 V
D2PAK (2 Leads + Tab)
TO-263-3
TO-263AB
Surface Mount
TO-263AB
500 mA
R6020ENZ4C13
Rohm Semiconductor
650 V
200 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
TO-247-3
Through Hole
TO-247
500 mA
10 A
1.55 V
1 Pair Common Cathode
R6020ENZ4C13
Rohm Semiconductor
730 pF
650 V
400 µA
SiC (Silicon Carbide) Schottky
0 ns
1.55 V
TO-247-3
Through Hole
TO-247
500 mA
175 °C
Product thumbnail image
Rohm Semiconductor
1.2 kV
200 µA
SiC (Silicon Carbide) Schottky
0 ns
TO-247-3
Through Hole
TO-247N
500 mA
10 A
1.6 V
1 Pair Common Cathode
175 °C
R6020ENZ4C13
Rohm Semiconductor
1.2 kV
200 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
TO-247-3
Through Hole
TO-247
500 mA
10 A
1.6 V
1 Pair Common Cathode
TO-247N
Rohm Semiconductor
650 V
200 µA
SiC (Silicon Carbide) Schottky
0 ns
TO-247-3
Through Hole
TO-247N
500 mA
10 A
1.55 V
1 Pair Common Cathode
175 °C
TO-220-2
Rohm Semiconductor
730 pF
650 V
400 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
1.55 V
TO-220-2
Through Hole
TO-220AC
500 mA
Automotive
AEC-Q101
TO-247N
Rohm Semiconductor
650 V
200 µA
SiC (Silicon Carbide) Schottky
0 ns
TO-247-3
Through Hole
TO-247N
500 mA
10 A
1.55 V
1 Pair Common Cathode
175 °C
TO-220-2
Rohm Semiconductor
1060 pF
1.2 kV
400 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
1.6 V
TO-220-2
Through Hole
TO-220AC
500 mA
Automotive
AEC-Q101
ROHM SCS212AJHRTLL
Rohm Semiconductor
730 pF
650 V
400 µA
175 ░C
SiC (Silicon Carbide) Schottky
0 ns
1.55 V
D2PAK (2 Leads + Tab)
TO-263-3
TO-263AB
Surface Mount
TO-263AB
500 mA
Automotive
AEC-Q101

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyN/A 345$ 9.91
Tube 1$ 8.49
10$ 5.84
450$ 4.54
NewarkEach 1$ 9.50
10$ 6.53
25$ 6.40
60$ 6.26
120$ 6.13
270$ 6.12
510$ 4.83

Description

General part information

SCS220 Series

Switching loss reduced, enabling high-speed switching . (3-pin package)

Documents

Technical documentation and resources

About Flammability of Materials

Environmental Data

Calculation of Power Dissipation in Switching Circuit

Schematic Design & Verification

Taping Information

Package Information

How to Create Symbols for PSpice Models

Models

Notes for Temperature Measurement Using Thermocouples

Thermal Design

Reliability Test Result

Manufacturing Data

Application Note for SiC Power Devices and Modules

Schematic Design & Verification

Example of Heat Dissipation Design for TO Packages: Effect of Heat Dissipation Materials

Thermal Design

Overview of ROHM's Simulation Models(for ICs and Discrete Semiconductors)

Technical Article

θ<sub>JC</sub> and Ψ<sub>JT</sub>

Thermal Design

Basics of Thermal Resistance and Heat Dissipation

Thermal Design

Importance of Probe Calibration When Measuring Power: Deskew

Schematic Design & Verification

Compliance of the ELV directive

Environmental Data

ESD Data

Characteristics Data

Notes for Temperature Measurement Using Forward Voltage of PN Junction

Thermal Design

Method for Monitoring Switching Waveform

Schematic Design & Verification

Measurement Method and Usage of Thermal Resistance RthJC

Thermal Design

What is a Thermal Model? (SiC Power Device)

Thermal Design

How to Use the Thermal Resistance and Thermal Characteristics Parameters

Thermal Design

Notes for Calculating Power Consumption:Static Operation

Thermal Design

Simulation Verification to Identify Oscillation between Parallel Dies during Design Phase of Power Modules

Technical Article

How to Use Thermal Models

Thermal Design

Inner Structure

Package Information

Condition of Soldering

Package Information

Package Dimensions

Package Information

Method for Calculating Junction Temperature from Transient Thermal Resistance Data

Thermal Design

How to Suppress the Parallel Drive Oscillation in SiC Modules

Application Note

How to measure the oscillation occurs between parallel-connected devices

Technical Article

Precautions When Measuring the Rear of the Package with a Thermocouple

Thermal Design

PCB Layout Thermal Design Guide

Thermal Design

Power Eco Family: Overview of ROHM's Power Semiconductor Lineup

White Paper

Anti-Whisker formation

Package Information

Diode Types and Applications

Technical Article

SCS220AE Data Sheet

Data Sheet

How to Use LTspice&reg; Models

Schematic Design & Verification

Judgment Criteria of Thermal Evaluation

Thermal Design

Precautions for Thermal Resistance of Insulation Sheet

Thermal Design

4 Steps for Successful Thermal Designing of Power Devices

White Paper

Oscillation countermeasures for MOSFETs in parallel

Schematic Design & Verification

Cutting-Edge Web Simulation Tool "ROHM Solution Simulator" Capable of Complete Circuit Verification of Power Devices and Driver ICs

White Paper

How to Use LTspice&reg; Models: Tips for Improving Convergence

Schematic Design & Verification

What Is Thermal Design

Thermal Design

Explanation for Marking - TO-247N SiC_Marking-e.pdf

Package Information

About Export Administration Regulations (EAR)

Export Information

θ<sub>JA</sub> and Ψ<sub>JT</sub>

Thermal Design

Two-Resistor Model for Thermal Simulation

Thermal Design

Part Explanation

Application Note

Impedance Characteristics of Bypass Capacitor

Schematic Design & Verification

Application Note EN

Datasheet