T
Texas Instruments
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
65HVD12Enhanced Product 3.3-V Rs-485 Transceiver | Interface | 6 | Active | The SN65HVD10, SN75HVD10, SN65HVD11, SN75HVD11, SN65HVD12, and SN75HVD12 bus transceivers all combine a 3-state differential line driver, as well as a differential input line receiver that operates with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits, designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables, that can be externally connected together to function as direction control. Very low device standby supply current, can be achieved by disabling the driver and the receiver.
The driver differential outputs and receiver differential inputs connect internally to form a differential input/output (I/O) bus port, that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC= 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.
The SN65HVD10, SN75HVD10, SN65HVD11, SN75HVD11, SN65HVD12, and SN75HVD12 bus transceivers all combine a 3-state differential line driver, as well as a differential input line receiver that operates with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits, designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables, that can be externally connected together to function as direction control. Very low device standby supply current, can be achieved by disabling the driver and the receiver.
The driver differential outputs and receiver differential inputs connect internally to form a differential input/output (I/O) bus port, that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC= 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications. |
| Interface | 3 | Active | ||
65HVD14713.3V, Full-Duplex RS-485, 16kV IEC ESD, 400kbps data rate, No Enables | Drivers, Receivers, Transceivers | 1 | Active | The SN65HVD147x family of full-duplex transceivers feature the highest ESD protection in the RS-485 portfolio, supporting ±16-kV IEC61000-4-2 contact discharge and > ±30-kV HBM ESD protection. These RS-485 transceivers have robust 3.3-V drivers and receivers and are offered in a standard SOIC package as well as in a small-footprint MSOP package. The large receiver hysteresis of the SN65HVD147x devices provides immunity to conducted differential noise and the wide operating temperature enables reliability in harsh operating environments.
These devices each combine a differential driver and a differential receiver, which operate from a single 3.3-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. These devices all feature a wide common-mode voltage range which makes the devices suitable for multi-point applications over long cable runs.
The SN65HVD1471, SN65HVD1474, and SN65HVD1477 devices are fully enabled with no external enabling pins.
The SN65HVD1470, SN65HVD1473, and SN65HVD1476 devices have active-high driver enables and active-low receiver enables. A low, less than 5-µA standby current can be achieved by disabling both the driver and receiver.
These devices are characterized from –40°C to 125°C.
The SN65HVD147x family of full-duplex transceivers feature the highest ESD protection in the RS-485 portfolio, supporting ±16-kV IEC61000-4-2 contact discharge and > ±30-kV HBM ESD protection. These RS-485 transceivers have robust 3.3-V drivers and receivers and are offered in a standard SOIC package as well as in a small-footprint MSOP package. The large receiver hysteresis of the SN65HVD147x devices provides immunity to conducted differential noise and the wide operating temperature enables reliability in harsh operating environments.
These devices each combine a differential driver and a differential receiver, which operate from a single 3.3-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. These devices all feature a wide common-mode voltage range which makes the devices suitable for multi-point applications over long cable runs.
The SN65HVD1471, SN65HVD1474, and SN65HVD1477 devices are fully enabled with no external enabling pins.
The SN65HVD1470, SN65HVD1473, and SN65HVD1476 devices have active-high driver enables and active-low receiver enables. A low, less than 5-µA standby current can be achieved by disabling both the driver and receiver.
These devices are characterized from –40°C to 125°C. |
65HVD14733.3V, Full-Duplex RS-485, 16kV IEC ESD, 20Mbps data rate, w/Enables | Integrated Circuits (ICs) | 3 | Active | The SN65HVD147x family of full-duplex transceivers feature the highest ESD protection in the RS-485 portfolio, supporting ±16-kV IEC61000-4-2 contact discharge and > ±30-kV HBM ESD protection. These RS-485 transceivers have robust 3.3-V drivers and receivers and are offered in a standard SOIC package as well as in a small-footprint MSOP package. The large receiver hysteresis of the SN65HVD147x devices provides immunity to conducted differential noise and the wide operating temperature enables reliability in harsh operating environments.
These devices each combine a differential driver and a differential receiver, which operate from a single 3.3-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. These devices all feature a wide common-mode voltage range which makes the devices suitable for multi-point applications over long cable runs.
The SN65HVD1471, SN65HVD1474, and SN65HVD1477 devices are fully enabled with no external enabling pins.
The SN65HVD1470, SN65HVD1473, and SN65HVD1476 devices have active-high driver enables and active-low receiver enables. A low, less than 5-µA standby current can be achieved by disabling both the driver and receiver.
These devices are characterized from –40°C to 125°C.
The SN65HVD147x family of full-duplex transceivers feature the highest ESD protection in the RS-485 portfolio, supporting ±16-kV IEC61000-4-2 contact discharge and > ±30-kV HBM ESD protection. These RS-485 transceivers have robust 3.3-V drivers and receivers and are offered in a standard SOIC package as well as in a small-footprint MSOP package. The large receiver hysteresis of the SN65HVD147x devices provides immunity to conducted differential noise and the wide operating temperature enables reliability in harsh operating environments.
These devices each combine a differential driver and a differential receiver, which operate from a single 3.3-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. These devices all feature a wide common-mode voltage range which makes the devices suitable for multi-point applications over long cable runs.
The SN65HVD1471, SN65HVD1474, and SN65HVD1477 devices are fully enabled with no external enabling pins.
The SN65HVD1470, SN65HVD1473, and SN65HVD1476 devices have active-high driver enables and active-low receiver enables. A low, less than 5-µA standby current can be achieved by disabling both the driver and receiver.
These devices are characterized from –40°C to 125°C. |
| Drivers, Receivers, Transceivers | 2 | Active | ||
| Integrated Circuits (ICs) | 2 | Active | ||
65HVD1780Automotive Fault-Protected RS-485 Transceivers with 3.3-V to 5-V Operation | Drivers, Receivers, Transceivers | 5 | Active | The SN65HVD178x devices are designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. The devices are also robust to ESD events with high levels of protection to the human-body-model specification.
The SN65HVD178x devices combine a differential driver and a differential receiver, which operate from a single power supply. In the SN65HVD1782, the driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the devices suitable for multipoint applications over long cable runs. These devices are characterized from –40°C to 125°C. These devices are pin-compatible with the industry-standard SN75176 transceiver, making them drop-in upgrades in most systems.
These devices are fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet.
The SN65HVD178x devices are designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. The devices are also robust to ESD events with high levels of protection to the human-body-model specification.
The SN65HVD178x devices combine a differential driver and a differential receiver, which operate from a single power supply. In the SN65HVD1782, the driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the devices suitable for multipoint applications over long cable runs. These devices are characterized from –40°C to 125°C. These devices are pin-compatible with the industry-standard SN75176 transceiver, making them drop-in upgrades in most systems.
These devices are fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet. |
65HVD1781Automotive Catalog 70-V Fault-Protected RS-485 Transceivers | Integrated Circuits (ICs) | 6 | Active | The device is designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. It is also robust to ESD events, with high levels of protection to the human-body-model specification.
The SN65HVD1781A-Q1 combines a differential driver and a differential receiver, which operate from a single power supply. The driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the device suitable for multipoint applications over long cable runs. The device is characterized from –40°C to 125°C. The SN65HVD1781A-Q1 device is pin-compatible with the industry-standard SN75176 transceiver, making it a drop-in upgrade in most systems.
The device is fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet.
The device is designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. It is also robust to ESD events, with high levels of protection to the human-body-model specification.
The SN65HVD1781A-Q1 combines a differential driver and a differential receiver, which operate from a single power supply. The driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the device suitable for multipoint applications over long cable runs. The device is characterized from –40°C to 125°C. The SN65HVD1781A-Q1 device is pin-compatible with the industry-standard SN75176 transceiver, making it a drop-in upgrade in most systems.
The device is fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet. |
65HVD1782Automotive Fault-Protected RS-485 Transceivers with 3.3-V to 5-V Operation | Drivers, Receivers, Transceivers | 3 | Active | The SN65HVD178x devices are designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. The devices are also robust to ESD events with high levels of protection to the human-body-model specification.
The SN65HVD178x devices combine a differential driver and a differential receiver, which operate from a single power supply. In the SN65HVD1782, the driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the devices suitable for multipoint applications over long cable runs. These devices are characterized from –40°C to 125°C. These devices are pin-compatible with the industry-standard SN75176 transceiver, making them drop-in upgrades in most systems.
These devices are fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet.
The SN65HVD178x devices are designed to survive overvoltage faults such as direct shorts to power supplies, mis-wiring faults, connector failures, cable crushes, and tool mis-applications. The devices are also robust to ESD events with high levels of protection to the human-body-model specification.
The SN65HVD178x devices combine a differential driver and a differential receiver, which operate from a single power supply. In the SN65HVD1782, the driver differential outputs and the receiver differential inputs are connected internally to form a bus port suitable for half-duplex (two-wire bus) communication. This port features a wide common-mode voltage range, making the devices suitable for multipoint applications over long cable runs. These devices are characterized from –40°C to 125°C. These devices are pin-compatible with the industry-standard SN75176 transceiver, making them drop-in upgrades in most systems.
These devices are fully compliant with ANSI TIA/EIA 485-A with a 5-V supply and can operate with a 3.3-V supply with reduced driver output voltage for low-power applications. For applications where operation is required over an extended common-mode voltage range, see the SN65HVD1785 (SLLS872) data sheet. |
| Integrated Circuits (ICs) | 3 | Active | ||
Standalone parts(12413)
...
| Part | Category | Description |
|---|---|---|
Texas Instruments BQ2002CSNTRG4Unknown | Integrated Circuits (ICs) | LINEAR BATTERY CHARGER NICD/NIMH 2000MA 0V TO 6V 8-PIN SOIC T/R |
Texas Instruments LM3676SDX-3.3Obsolete | Integrated Circuits (ICs) | IC REG BUCK 3.3V 600MA 8WSON |
Texas Instruments | Integrated Circuits (ICs) | TMX320DRE311 179PIN UBGA 200MHZ |
Texas Instruments UCC3580N-1G4Obsolete | Integrated Circuits (ICs) | IC REG CTRLR FWRD CONV 16DIP |
Texas Instruments LM2831YMF EVALObsolete | Development Boards Kits Programmers | EVAL BOARD FOR LM2831 |
Texas Instruments | Integrated Circuits (ICs) | BUFFER/LINE DRIVER 8-CH NON-INVERTING 3-ST CMOS 20-PIN SSOP T/R |
Texas Instruments | Integrated Circuits (ICs) | ANALOG OTHER PERIPHERALS |
Texas Instruments | Integrated Circuits (ICs) | RADIATION-HARDENED, QMLP 60V HAL |
Texas Instruments SN75LVDS051DRObsolete | Integrated Circuits (ICs) | IC TRANSCEIVER FULL 2/2 16SOIC |
Texas Instruments | Integrated Circuits (ICs) | AUTOMOTIVE OCTAL D-TYPE FLIP-FLO |