| Integrated Circuits (ICs) | 4 | Obsolete | |
| Integrated Circuits (ICs) | 1 | Active | The 74HC390; 74HCT390 is a dual 4-bit decade ripple counter divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections share an asynchronous master reset input (nMR) and can be used in a BCD decade or bi-quinary configuration. If master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks (nCP0 and nCP1) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25, 50 or 100. Each section is triggered by the HIGH-to-LOW transition of the clock inputs (nCP0 and nCP1). For BCD decade operation, the nQ0 output is connected to the nCP1 input of the divide-by-5 section. For bi-quinary decade operation, the nQ3 output is connected to the nCP0 input and nQ0 becomes the decade output. A HIGH on the nMR input overrides the clocks and sets the four outputs LOW. This device features reduced input threshold levels to allow interfacing to TTL logic levels. Inputs also include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
| Counters, Dividers | 1 | Active | The 74HC390; 74HCT390 is a dual 4-bit decade ripple counter divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections share an asynchronous master reset input (nMR) and can be used in a BCD decade or bi-quinary configuration. If master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks (nCP0 and nCP1) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25, 50 or 100. Each section is triggered by the HIGH-to-LOW transition of the clock inputs (nCP0 and nCP1). For BCD decade operation, the nQ0 output is connected to the nCP1 input of the divide-by-5 section. For bi-quinary decade operation, the nQ3 output is connected to the nCP0 input and nQ0 becomes the decade output. A HIGH on the nMR input overrides the clocks and sets the four outputs LOW. This device features reduced input threshold levels to allow interfacing to TTL logic levels. Inputs also include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
74HC393Dual 4-bit binary ripple counter | Logic | 4 | Active | The 74HC393-Q100; 74HCT393-Q100 is a dual 4-stage binary ripple counter. Each counter features a clock input (nCP), an overriding asynchronous master reset input (nMR) and 4 buffered parallel outputs (nQ0 to nQ3). The counter advances on the HIGH-to-LOW transition of nCP. A HIGH on nMR clears the counter stages and forces the outputs LOW, independent of the state of nCP. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
| Logic | 1 | Active | The 74HC393; 74HCT393 is a dual 4-stage binary ripple counter. Each counter features a clock input (nCP), an overriding asynchronous master reset input (nMR) and 4 buffered parallel outputs (nQ0 to nQ3). The counter advances on the HIGH-to-LOW transition of nCP. A HIGH on nMR clears the counter stages and forces the outputs LOW, independent of the state of nCP. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
| Integrated Circuits (ICs) | 1 | Active | The 74HC393-Q100; 74HCT393-Q100 is a dual 4-stage binary ripple counter. Each counter features a clock input (nCP), an overriding asynchronous master reset input (nMR) and 4 buffered parallel outputs (nQ0 to nQ3). The counter advances on the HIGH-to-LOW transition of nCP. A HIGH on nMR clears the counter stages and forces the outputs LOW, independent of the state of nCP. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
| Logic | 1 | Active | The 74HC393; 74HCT393 is a dual 4-stage binary ripple counter. Each counter features a clock input (nCP), an overriding asynchronous master reset input (nMR) and 4 buffered parallel outputs (nQ0 to nQ3). The counter advances on the HIGH-to-LOW transition of nCP. A HIGH on nMR clears the counter stages and forces the outputs LOW, independent of the state of nCP. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
| Integrated Circuits (ICs) | 2 | Active | |
| Logic | 1 | Active | The 74HC3G04-Q100; 74HCT3G04-Q100 is a triple inverter. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |
74HC3G06Triple inverter with open-drain outputs | Gates and Inverters | 2 | Active | The 74HC3G06; 74HCT3G06 is a triple inverter with open-drain outputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. |