M
Microchip Technology
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
MIC44206 A MOSFET Gate Driver | Gate Drivers | 11 | Active | MIC4420, MIC4429 and MIC429 MOSFET gate drivers are tough, efficient, and easy to use. The MIC4429 and MIC429 are inverting drivers, while the MIC4420 is a non-inverting driver. They are capable of 6 A (peak) output and can drive the largest MOSFETs with an improved safe operating margin. The MIC4420/4429/429 accepts any logic input from 2.4V to VS without external speed-up capacitors or resistor networks. Proprietary circuits allow the input to swing negative by as much as 5 V without damaging the part. Additional circuits protect against damage from electrostatic discharge. MIC4420/4429/429 drivers can replace three or more discrete components, reducing PCB area requirements, simplifying product design, and reducing assembly cost. Modern BiCMOS/DMOS construction guarantees freedom from latch-up. The rail-to-rail swing capability helps ensure adequate gate voltage to the MOSFET during power up/down sequencing. Note: See MIC4120/4129 for high power and narrow pulse applications. |
MIC4421A9 A MOSFET Gate Driver | Power Management (PMIC) | 20 | Active | MIC4421A and MIC4422A MOSFET gate drivers are rugged, efficient, and easy to use. The MIC4421A is an inverting driver, while the MIC4422A is a non-inverting driver. Both versions are capable of 9 A (peak) output and can drive the largest MOSFETs with an improved safe operating margin. The MIC4421A/4422A accepts any logic input from 2.4V to VS without external speed-up capacitors or resistor networks. Proprietary circuits allow the input to swing negative by as much as 5 V without damaging the part. Additional circuits protect against damage from electrostatic discharge. MIC4421A/4422A gate drivers can replace three or more discrete components, reducing PCB area requirements, simplifying product design, and reducing assembly cost. Modern Bipolar/CMOS/DMOS construction guarantees freedom from latch-up. The rail-to-rail swing capability of CMOS/DMOS helps ensure adequate gate voltage to the MOSFET during power up/down sequencing. Since these devices are fabricated on a self-aligned process, they have very low crossover current, run cool, use little power, and are easy to drive. |
MIC4422A9 A Non-Inverting Peak Low Side MOSFET Driver | Gate Drivers | 24 | Active | MIC4421A and MIC4422A MOSFET gate drivers are rugged, efficient, and easy to use. The MIC4421A is an inverting driver, while the MIC4422A is a non-inverting driver. Both versions are capable of 9A (peak) output and can drive the largest MOSFETs with an improved safe operating margin. The MIC4421A/4422A accepts any logic input from 2.4 V to VS without external speed-up capacitors or resistor networks. Proprietary circuits allow the input to swing negative by as much as 5 V without damaging the part. Additional circuits protect against damage from electrostatic discharge. MIC4421A/4422A gate drivers can replace three or more discrete components, reducing PCB area requirements, simplifying product design, and reducing assembly cost. Modern Bipolar/CMOS/DMOS construction guarantees freedom from latch-up. The rail-to-rail swing capability of CMOS/DMOS helps ensure adequate gate voltage to the MOSFET during power up/down sequencing. Since these devices are fabricated on a self-aligned process, they have very low crossover current, run cool, use little power, and are easy to drive. |
MIC4423Dual 3 A MOSFET Gate Driver | Integrated Circuits (ICs) | 13 | Active | The MIC4423/4424/4425 family are highly reliable BiCMOS/DMOS buffer/driver/MOSFET gate drivers. They are higher output current versions of the MIC4426/4427/4428, which are improved versions of the MIC426/427/428. All three families are pin-compatible. The MIC4423/4424/4425 drivers are capable of giving reliable service in more demanding electrical environments than their predecessors. They will not latch under any conditions within their power and voltage ratings. They can survive up to 5 V of noise spiking, of either polarity, on the ground pin. They can accept, without either damage or logic upset, up to half an amp of reverse current (either polarity) forced back into their outputs. The MIC4423/4424/4425 series of gate drivers are easier to use, more flexible in operation, and more forgiving than other CMOS or bipolar drivers currently available. Their BiCMOS/DMOS construction dissipates minimum power and provides rail-to-rail voltage swings. Primarily intended for driving power MOSFETs, the MIC4423/4424/4425 gate drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low impedance, high peak currents, and fast switching times. Heavily loaded clock lines, coaxial cables, or piezoelectric transducers are some examples. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package. |
MIC4424Dual 3 A MOSFET Gate Driver | Integrated Circuits (ICs) | 11 | Active | The MIC4423/4424/4425 family are highly reliable BiCMOS/DMOS buffer/driver/MOSFET gate drivers. They are higher output current versions of the MIC4426/4427/4428, which are improved versions of the MIC426/427/428. All three families are pin-compatible. The MIC4423/4424/4425 drivers are capable of giving reliable service in more demanding electrical environments than their predecessors. They will not latch under any conditions within their power and voltage ratings. They can survive up to 5 V of noise spiking, of either polarity, on the ground pin. They can accept, without either damage or logic upset, up to half an amp of reverse current (either polarity) forced back into their outputs. The MIC4423/4424/4425 series of gate drivers are easier to use, more flexible in operation, and more forgiving than other CMOS or bipolar drivers currently available. Their BiCMOS/DMOS construction dissipates minimum power and provides rail-to-rail voltage swings. Primarily intended for driving power MOSFETs, the MIC4423/4424/4425 gate drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low impedance, high peak currents, and fast switching times. Heavily loaded clock lines, coaxial cables, or piezoelectric transducers are some examples. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package. |
MIC4425Dual 3 A MOSFET Gate Driver | PMIC | 12 | Active | The MIC4423/4424/4425 family are highly reliable BiCMOS/DMOS buffer/driver/MOSFET gate drivers. They are higher output current versions of the MIC4426/4427/4428, which are improved versions of the MIC426/427/428. All three families are pin-compatible. The MIC4423/4424/4425 drivers are capable of giving reliable service in more demanding electrical environments than their predecessors. They will not latch under any conditions within their power and voltage ratings. They can survive up to 5 V of noise spiking, of either polarity, on the ground pin. They can accept, without either damage or logic upset, up to half an amp of reverse current (either polarity) forced back into their outputs. The MIC4423/4424/4425 series of gate drivers are easier to use, more flexible in operation, and more forgiving than other CMOS or bipolar drivers currently available. Their BiCMOS/DMOS construction dissipates minimum power and provides rail-to-rail voltage swings. Primarily intended for driving power MOSFETs, the MIC4423/4424/4425 gate drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low impedance, high peak currents, and fast switching times. Heavily loaded clock lines, coaxial cables, or piezoelectric transducers are some examples. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package. |
| Gate Drivers | 13 | Active | ||
| Integrated Circuits (ICs) | 10 | Active | ||
| Integrated Circuits (ICs) | 13 | Active | ||
MIC44296 A MOSFET Gate Driver | Integrated Circuits (ICs) | 13 | Active | MIC4420, MIC4429 and MIC429 MOSFET gate drivers are tough, efficient, and easy to use. The MIC4429 and MIC429 are inverting drivers, while the MIC4420 is a non-inverting driver. They are capable of 6 A (peak) output and can drive the largest MOSFETs with an improved safe operating margin. The MIC4420/4429/429 accepts any logic input from 2.4 V to VS without external speed-up capacitors or resistor networks. Proprietary circuits allow the input to swing negative by as much as 5 V without damaging the part. Additional circuits protect against damage from electrostatic discharge. MIC4420/4429/429 gate drivers can replace three or more discrete components, reducing PCB area requirements, simplifying product design, and reducing assembly cost. Modern BiCMOS/DMOS construction guarantees freedom from latch-up. The rail-to-rail swing capability helps ensure adequate gate voltage to the MOSFET during power up/down sequencing. Note: See MIC4120/4129 for high power and narrow pulse applications. |
| Part | Category | Description |
|---|---|---|
Microchip Technology | Crystals Oscillators Resonators | CMOS OUTPUT CLOCK OSCILLATOR, 24MHZ NOM |
Microchip Technology | Crystals Oscillators Resonators | MEMS OSC |
Microchip Technology | Integrated Circuits (ICs) | 1GHZ ARM CORTEX A7 W/ MIPI CAMERA AND 2GB INTEGRATED DDR3L |
Microchip Technology | Discrete Semiconductor Products | DIODE GEN PURP 100V 12A DO203AA |
Microchip Technology MSMBJ5372BLTB | Circuit Protection | VOLTAGE REGULATOR |
Microchip Technology | Integrated Circuits (ICs) | OPERATIONAL AMPLIFIER, 1 CHANNELS, 10 MHZ, 15 V/ΜS, 2.2V TO 5.5V, SOT-23, 5 PINS |
Microchip Technology LE9531CMQCTObsolete | Integrated Circuits (ICs) | IC TELECOM INTERFACE 28QFN |
Microchip Technology MCP2021-330E/MD-AE2VAOObsolete | Integrated Circuits (ICs) | IC TRANSCEIVER |
Microchip Technology | Integrated Circuits (ICs) | MCU 8-BIT PIC16 PIC RISC 3.5KB FLASH 3.3V/5V 18-PIN SOIC W TUBE |
Microchip Technology VCC6-LCF-212M500000Obsolete | Crystals Oscillators Resonators | DIFFERENTIAL XO +3.3 VDC +/-5% L |