Zenode.ai Logo
Beta

Technical Specifications

Parameters and characteristics for this part

SpecificationAFE58JD28ZAV
Mounting TypeSurface Mount
Number of Bits14, 12
Number of Channels16
Package / Case289-LFBGA
Power (Watts)64 mW
Supplier Device Package289-NFBGA (15x15)
Voltage - Supply, Analog [Max]3.6 V
Voltage - Supply, Analog [Min]3.15 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyTray 1$ 166.70
10$ 159.66
25$ 156.13
Texas InstrumentsJEDEC TRAY (5+1) 1$ 134.83
100$ 122.04
250$ 118.56
1000$ 116.23

Description

General part information

AFE58JD28 Series

The AFE58JD28 device is a highly-integrated, analog front-end (AFE) solutions specifically designed for ultrasound systems where high performance, low power, and small size are required.

The AFE58JD28 is an integrated AFE optimized for medical ultrasound application. The device is realized through a multichip module (MCM) with two dies: one voltage-controlled amplifier (VCA) die and one analog-to-digital converter (ADC) die. The VCA die has 16 channels that interface with the 16 channels of the ADC die.

Each channel in the VCA die can be configured in one of two modes: time gain compensation (TGC) mode or continuous wave (CW) mode. In TGC mode, each channel includes a low-noise amplifier (LNA), a voltage-controlled attenuator (VCAT), a programmable gain amplifier (PGA), and a third-order, low-pass filter (LPF). The LNA is programmable in gains of 21 dB, 18 dB, or 15 dB. The LNA also supports active termination. The VCAT supports an attenuation range of 0 dB to 36 dB, with analog voltage control for the attenuation. The PGA provides gain options from 18 dB to 27 dB in steps of 3 dB. The LPF cutoff frequency can be set between 10 MHz and 30 MHz to support ultrasound applications with different frequencies. In CW mode, the output of the LNA goes to a low-power passive mixer with 16 selectable phase delays followed by a summing amplifier with a band-pass filter. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.