
AFE58JD28 Series
16-Ch Ultrasound AFE With 102mW/Ch Power, Digital Demodulator, and JESD or LVDS Interface
Manufacturer: Texas Instruments
Catalog
16-Ch Ultrasound AFE With 102mW/Ch Power, Digital Demodulator, and JESD or LVDS Interface
Key Features
• 16-Channel AFE for Ultrasound Applications:Optimized Signal Chains for TGC and CW ModesFour Programmable TGC ProfilesLow-Noise Amplifier (LNA) With:Programmable Gain: 21 dB, 18 dB, and 15 dBLinear Input Signal Amplitude:0.37 VPP, 0.5 VPP, and 0.71 VPPActive TerminationVoltage-Controlled Attenuator (VCAT):Attenuation Range: 0 dB–36 dBProgrammable Gain Amplifier (PGA):18 dB–27 dB in Steps of 3 dB3rd-Order, Linear-Phase, Low-Pass Filter (LPF):Cutoff Frequency From 10 MHz to 30 MHzADC Modes (Idle-Channel SNR):14-Bit, 65-MSPS Mode: 75-dBFS12-Bit, 80-MSPS Mode: 72-dBFSOptimized for Noise and Power:TGC Mode: 102 mW/Ch at 0.8 nV/√Hz,65-MSPS, 14-Bit OutputCW Mode: 63 mW/ChExcellent Device-to-Device Gain Matching:±0.4 dB (Typical)Fast and Consistent Overload RecoveryContinuous Wave (CW) Path With:Low Close-In Phase Noise of –159 dBc/Hz at 1-kHz Frequency Offset off 2.5-MHz CarrierPhase Resolution: λ / 16Supports 16x and 8x CW Clocks12-dB Suppression of 3rd and 5th HarmonicsDigital I/Q Demodulator:Fractional Decimation Filter M = 1 to 63 With Increments of 0.25Data Throughput Reduction After DecimationOn-Chip RAM With 32 Preset ProfilesLVDS Interface With a Speed Up to 1 Gbps5-Gbps JESD Interface:JESD204B Subclass 0, 1, and 22, 4, or 8 Channels per JESD LaneSmall Package: 15-mm × 15-mm NFBGA-28916-Channel AFE for Ultrasound Applications:Optimized Signal Chains for TGC and CW ModesFour Programmable TGC ProfilesLow-Noise Amplifier (LNA) With:Programmable Gain: 21 dB, 18 dB, and 15 dBLinear Input Signal Amplitude:0.37 VPP, 0.5 VPP, and 0.71 VPPActive TerminationVoltage-Controlled Attenuator (VCAT):Attenuation Range: 0 dB–36 dBProgrammable Gain Amplifier (PGA):18 dB–27 dB in Steps of 3 dB3rd-Order, Linear-Phase, Low-Pass Filter (LPF):Cutoff Frequency From 10 MHz to 30 MHzADC Modes (Idle-Channel SNR):14-Bit, 65-MSPS Mode: 75-dBFS12-Bit, 80-MSPS Mode: 72-dBFSOptimized for Noise and Power:TGC Mode: 102 mW/Ch at 0.8 nV/√Hz,65-MSPS, 14-Bit OutputCW Mode: 63 mW/ChExcellent Device-to-Device Gain Matching:±0.4 dB (Typical)Fast and Consistent Overload RecoveryContinuous Wave (CW) Path With:Low Close-In Phase Noise of –159 dBc/Hz at 1-kHz Frequency Offset off 2.5-MHz CarrierPhase Resolution: λ / 16Supports 16x and 8x CW Clocks12-dB Suppression of 3rd and 5th HarmonicsDigital I/Q Demodulator:Fractional Decimation Filter M = 1 to 63 With Increments of 0.25Data Throughput Reduction After DecimationOn-Chip RAM With 32 Preset ProfilesLVDS Interface With a Speed Up to 1 Gbps5-Gbps JESD Interface:JESD204B Subclass 0, 1, and 22, 4, or 8 Channels per JESD LaneSmall Package: 15-mm × 15-mm NFBGA-289
Description
AI
The AFE58JD28 device is a highly-integrated, analog front-end (AFE) solutions specifically designed for ultrasound systems where high performance, low power, and small size are required.
The AFE58JD28 is an integrated AFE optimized for medical ultrasound application. The device is realized through a multichip module (MCM) with two dies: one voltage-controlled amplifier (VCA) die and one analog-to-digital converter (ADC) die. The VCA die has 16 channels that interface with the 16 channels of the ADC die.
Each channel in the VCA die can be configured in one of two modes: time gain compensation (TGC) mode or continuous wave (CW) mode. In TGC mode, each channel includes a low-noise amplifier (LNA), a voltage-controlled attenuator (VCAT), a programmable gain amplifier (PGA), and a third-order, low-pass filter (LPF). The LNA is programmable in gains of 21 dB, 18 dB, or 15 dB. The LNA also supports active termination. The VCAT supports an attenuation range of 0 dB to 36 dB, with analog voltage control for the attenuation. The PGA provides gain options from 18 dB to 27 dB in steps of 3 dB. The LPF cutoff frequency can be set between 10 MHz and 30 MHz to support ultrasound applications with different frequencies. In CW mode, the output of the LNA goes to a low-power passive mixer with 16 selectable phase delays followed by a summing amplifier with a band-pass filter. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.
The 16 channels of the ADC die can be configured to operate with a resolution of 14 bits or 12 bits. The ADC resolution can be traded off with conversion rate, and can operate at maximum speeds of 65 MSPS and 80 MSPS at 14-bit and 12-bit resolution, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS) that can easily interface with low-cost field-programmable gate arrays (FPGAs).
The AFE58JD28 additionally includes a digital demodulator and JESD204B data packing blocks. The digital in-phase and quadrature (I/Q) demodulator with programmable decimation filters accelerates computationally-intensive algorithms at low power. The device also supports an optional JESD204B interface that runs up to 5 Gbps and further reduces the circuit-board routing challenges in high-channel count systems.
The device also allows various power and noise combinations to be selected for optimizing system performance. Therefore, these devices are suitable ultrasound AFE solutions for systems with strict battery-life requirements.
The device is available in a 15-mm × 15-mm NFBGA-289 package and is pin-compatible with theAFE5818andAFE5816family.
The AFE58JD28 device is a highly-integrated, analog front-end (AFE) solutions specifically designed for ultrasound systems where high performance, low power, and small size are required.
The AFE58JD28 is an integrated AFE optimized for medical ultrasound application. The device is realized through a multichip module (MCM) with two dies: one voltage-controlled amplifier (VCA) die and one analog-to-digital converter (ADC) die. The VCA die has 16 channels that interface with the 16 channels of the ADC die.
Each channel in the VCA die can be configured in one of two modes: time gain compensation (TGC) mode or continuous wave (CW) mode. In TGC mode, each channel includes a low-noise amplifier (LNA), a voltage-controlled attenuator (VCAT), a programmable gain amplifier (PGA), and a third-order, low-pass filter (LPF). The LNA is programmable in gains of 21 dB, 18 dB, or 15 dB. The LNA also supports active termination. The VCAT supports an attenuation range of 0 dB to 36 dB, with analog voltage control for the attenuation. The PGA provides gain options from 18 dB to 27 dB in steps of 3 dB. The LPF cutoff frequency can be set between 10 MHz and 30 MHz to support ultrasound applications with different frequencies. In CW mode, the output of the LNA goes to a low-power passive mixer with 16 selectable phase delays followed by a summing amplifier with a band-pass filter. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.
The 16 channels of the ADC die can be configured to operate with a resolution of 14 bits or 12 bits. The ADC resolution can be traded off with conversion rate, and can operate at maximum speeds of 65 MSPS and 80 MSPS at 14-bit and 12-bit resolution, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS) that can easily interface with low-cost field-programmable gate arrays (FPGAs).
The AFE58JD28 additionally includes a digital demodulator and JESD204B data packing blocks. The digital in-phase and quadrature (I/Q) demodulator with programmable decimation filters accelerates computationally-intensive algorithms at low power. The device also supports an optional JESD204B interface that runs up to 5 Gbps and further reduces the circuit-board routing challenges in high-channel count systems.
The device also allows various power and noise combinations to be selected for optimizing system performance. Therefore, these devices are suitable ultrasound AFE solutions for systems with strict battery-life requirements.
The device is available in a 15-mm × 15-mm NFBGA-289 package and is pin-compatible with theAFE5818andAFE5816family.