MSP430FR604116-MHz MCU with 32-KB FRAM, LCD, 12-bit high speed 8-MSPS sigma-delta ADC and integrated sensor AFE | Integrated Circuits (ICs) | 1 | Active | The Texas Instruments MSP430FR604x and MSP430FR504x SoCs are part of theMSP430 ultrasonic sensing microcontroller(MCU) family and are powerful, highly integrated devices designed for a wide variety of industrial applications:
These MCUs offer an integrated ultrasonic sensing solution (USS_A) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components.
MSP430FR604x and MSP430FR504x devices implement high-speed ADC-based signal acquisition followed by optimized digital signal processing using the low-energy accelerator (LEA) to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS_A module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The USS_A module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry standard ultrasonic transducers.
The MSP430FR604x and MSP430FR504x MCUs also integrate other peripherals to improve system integration for metering. It has a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. It also has an on-chip 8-mux LCD driver (MSP430FR604x only), a real-time clock (RTC), a 12-bit SAR ADC, an analog comparator, an advanced encryption (AES256) module, and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR504x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP-TS430PN80C 80-pin target development boardandEVM430-FR6043 ultrasonic gas flow meter EVM. TI also provides free software including theultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
The MSP430FR604x and MSP430FR504x MCU family integrates TI’s FRAM (ferroelectric RAM) and a holistic ultra-low-power MSP system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide.
The Texas Instruments MSP430FR604x and MSP430FR504x SoCs are part of theMSP430 ultrasonic sensing microcontroller(MCU) family and are powerful, highly integrated devices designed for a wide variety of industrial applications:
These MCUs offer an integrated ultrasonic sensing solution (USS_A) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components.
MSP430FR604x and MSP430FR504x devices implement high-speed ADC-based signal acquisition followed by optimized digital signal processing using the low-energy accelerator (LEA) to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS_A module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The USS_A module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry standard ultrasonic transducers.
The MSP430FR604x and MSP430FR504x MCUs also integrate other peripherals to improve system integration for metering. It has a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. It also has an on-chip 8-mux LCD driver (MSP430FR604x only), a real-time clock (RTC), a 12-bit SAR ADC, an analog comparator, an advanced encryption (AES256) module, and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR504x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP-TS430PN80C 80-pin target development boardandEVM430-FR6043 ultrasonic gas flow meter EVM. TI also provides free software including theultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
The MSP430FR604x and MSP430FR504x MCU family integrates TI’s FRAM (ferroelectric RAM) and a holistic ultra-low-power MSP system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide. |
MSP430FR6043116-MHz MCU with 64-KB FRAM, LCD, 12-bit high speed 8-MSPS sigma-delta ADC and integrated sensor AFE | Integrated Circuits (ICs) | 2 | Active | The Texas Instruments MSP430FR604x and MSP430FR504x SoCs are part of theMSP430 ultrasonic sensing microcontroller(MCU) family and are powerful, highly integrated devices designed for a wide variety of industrial applications:
These MCUs offer an integrated ultrasonic sensing solution (USS_A) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components.
MSP430FR604x and MSP430FR504x devices implement high-speed ADC-based signal acquisition followed by optimized digital signal processing using the low-energy accelerator (LEA) to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS_A module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The USS_A module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry standard ultrasonic transducers.
The MSP430FR604x and MSP430FR504x MCUs also integrate other peripherals to improve system integration for metering. It has a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. It also has an on-chip 8-mux LCD driver (MSP430FR604x only), a real-time clock (RTC), a 12-bit SAR ADC, an analog comparator, an advanced encryption (AES256) module, and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR504x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP-TS430PN80C 80-pin target development boardandEVM430-FR6043 ultrasonic gas flow meter EVM. TI also provides free software including theultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
The MSP430FR604x and MSP430FR504x MCU family integrates TI’s FRAM (ferroelectric RAM) and a holistic ultra-low-power MSP system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide.
The Texas Instruments MSP430FR604x and MSP430FR504x SoCs are part of theMSP430 ultrasonic sensing microcontroller(MCU) family and are powerful, highly integrated devices designed for a wide variety of industrial applications:
These MCUs offer an integrated ultrasonic sensing solution (USS_A) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components.
MSP430FR604x and MSP430FR504x devices implement high-speed ADC-based signal acquisition followed by optimized digital signal processing using the low-energy accelerator (LEA) to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS_A module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The USS_A module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry standard ultrasonic transducers.
The MSP430FR604x and MSP430FR504x MCUs also integrate other peripherals to improve system integration for metering. It has a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. It also has an on-chip 8-mux LCD driver (MSP430FR604x only), a real-time clock (RTC), a 12-bit SAR ADC, an analog comparator, an advanced encryption (AES256) module, and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR504x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP-TS430PN80C 80-pin target development boardandEVM430-FR6043 ultrasonic gas flow meter EVM. TI also provides free software including theultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
The MSP430FR604x and MSP430FR504x MCU family integrates TI’s FRAM (ferroelectric RAM) and a holistic ultra-low-power MSP system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide. |
MSP430FR604516-MHz MCU with 128-KB FRAM, LCD, 12-bit high speed 8-MSPS sigma-delta ADC and integrated sensor AFE | Integrated Circuits (ICs) | 1 | Active | The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide.
The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide. |
MSP430FR604716-MHz MCU with 256-KB FRAM, LCD, 12-bit high speed 8-MSPS sigma-delta ADC and integrated sensor AFE | Embedded | 2 | Active | The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide.
The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide. |
MSP430FR60471Ultrasonic Sensing MCU with 256KB FRAM, 8KB RAM, LCD, I2C Bootloader for flow meters | Microcontrollers | 1 | Active | The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide.
The Texas Instruments MSP430FR604x and MSP430FR603x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR604x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR604x and MSP430FR603x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.
The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation and accurate impendence matching to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.
Additionally, MSP430FR604x and MSP430FR603x MCUs integrate other peripherals to improve system integration for metering. The devices have a metering test interface (MTIF) module to implement pulse generation to indicate flow measured by the meter. The MSP430FR604x and MSP430FR603x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.
MSP430FR604x and MSP430FR603x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include theMSP‑TS430PZ100E 100-pin target development boardandEVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, andMSP430Ware™ software.
TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.
For complete module descriptions, see theMSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide. |
MSP430FR682016 MHz MCU with 32KB FRAM, 2KB SRAM, 116 seg LCD, 12-bit ADC , comparator, DMA, UART/SPI/I2C, timer | Embedded | 2 | Active | This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption.
This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. |
MSP430FR682216 MHz MCU with 64KB FRAM, 2KB SRAM, 116 seg LCD, 12-bit ADC , comparator, DMA, UART/SPI/I2C, timer | Embedded | 1 | Active | This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption.
This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. |
MSP430FR6822116 MHz MCU with 64KB FRAM, 2KB SRAM, 116 seg LCD, 12-bit ADC , comparator, DMA, UART/SPI/I2C, timer | Integrated Circuits (ICs) | 3 | Active | This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption.
This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. |
MSP430FR687216 MHz MCU with 64KB FRAM, 2KB SRAM, 112 seg LCD, 12-bit ADC , comparator, DMA, UART/SPI/I2C, timer | Microcontrollers | 2 | Active | This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption.
This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. |
MSP430FR6872116 MHz MCU with 64KB FRAM, 2KB SRAM, 112 seg LCD, 12-bit ADC , comparator, DMA, UART/SPI/I2C, timer | Embedded | 2 | Active | This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption.
This ultra-low-power MSP430FRxx FRAM microcontroller family consists of several devices featuring embedded nonvolatile FRAM, a 16-bit CPU, and different sets of peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. |