O
ON Semiconductor
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
| Part | Spec A | Spec B | Spec C | Spec D | Description |
|---|---|---|---|---|---|
| Part | Category | Description |
|---|---|---|
ON Semiconductor | Integrated Circuits (ICs) | SELF-PROTECTED N-CHANNEL POWER MOSFET/ REEL |
ON Semiconductor 74AC32PCObsolete | Integrated Circuits (ICs) | IC GATE OR 4CH 2-INP 14MDIP |
ON Semiconductor | Discrete Semiconductor Products | IGBT, 360V, 27A, 1.32V, 320MJ, TO-262<BR>ECOSPARK® I, N-CHANNEL IGNITION |
ON Semiconductor FAN1655MTFXObsolete | Integrated Circuits (ICs) | IC REG CTRLR DDR 1OUT 16TSSOP |
ON Semiconductor FIN1027MObsolete | Integrated Circuits (ICs) | LVDS DRIVER, LVDS DIFFERENTIAL DRIVER, -40 °C, 85 °C, 3 V, 3.6 V, SOIC |
ON Semiconductor | Integrated Circuits (ICs) | PIPELINE REGISTER, 8-BIT PQCC28 |
ON Semiconductor SLV4HC4053ADWRGObsolete | Integrated Circuits (ICs) | LDO REGULATOR, ULTRA-LOW NOISE, |
ON Semiconductor | Isolators | OPTOCOUPLER, DIP, 6 PINS, 5 KV, NON ZERO CROSSING, 800 V, FOD4218 SERIES |
ON Semiconductor NVMFD5483NLT1GObsolete | Discrete Semiconductor Products | DUAL N-CHANNEL POWER MOSFET 60V, 24A, 36MΩ |
ON Semiconductor | Discrete Semiconductor Products | BIP NPN 8A 50V |
| Series | Category | # Parts | Status | Description |
|---|---|---|---|---|
FAN3226C_F085CMOS input, dual inverting output, peak 3A sink, 3A source current Low-Side Gate Driver | Power Management (PMIC) | 5 | Active | The FAN3226-29 family of dual 2 A gate drivers is designed to drive N-channel enhancement-mode MOSFETs in low-side switching applications by providing high peak current pulses during the short switching intervals. The driver is available with either TTL or CMOS input thresholds. Internal circuitry provides an under-voltage lockout function by holding the output low until the supply voltage is within the operating range. In addition, the drivers feature matched internal propagation delays between A and B channels for applications requiring dual gate drives with critical timing, such as synchronous rectifiers. This enables connecting two drivers in parallel to effectively double the current capability driving a single MOSFET.The FAN322X drivers incorporate MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability.The FAN3226 offers two inverting drivers and the FAN3227 offers two non-inverting drivers. Each device has dual independent enable pins that default to ON if not connected. In the FAN3228 and FAN3229, each channel has dual inputs of opposite polarity, which allows configuration as non-inverting or inverting with an optional enable function using the second input. If one or both inputs are left unconnected, internal resistors bias the inputs such that the output is pulled low to hold the power MOSFET off. |
FAN3227CCMOS input, dual non-inverting output, peak 3A sink, 3A source current Low-Side Gate Driver | Power Management (PMIC) | 1 | Active | The FAN3226-29 family of dual 2A gate drivers is designed to drive N-channel enhancement-mode MOSFETs in low-side switching applications by providing high peak current pulses during the short switching intervals. The driver is available with either TTL or CMOS input thresholds. Internal circuitry provides an under-voltage lockout function by holding the output low until the supply voltage is within the operating range. In addition, the drivers feature matched internal propagation delays between A and B channels for applications requiring dual gate drives with critical timing, such as synchronous rectifiers. This enables connecting two drivers in parallel to effectively double the current capability driving a single MOSFET.The FAN322X drivers incorporate MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability.The FAN3226 offers two inverting drivers and the FAN3227 offers two non-inverting drivers. Each device has dual independent enable pins that default to ON if not connected. In the FAN3228 and FAN3229, each channel has dual inputs of opposite polarity, which allows configuration as non-inverting or inverting with an optional enable function using the second input. If one or both inputs are left unconnected, internal resistors bias the inputs such that the output is pulled low to hold the power MOSFET off. |
FAN3228T_F085Dual 2A High-Speed,<BR>Low-Side Gate Driver | PMIC | 5 | Active | "The FAN3226-29 family of dual 2 A gate drivers is designed to drive N-channel enhancement-mode MOSFETs in low-side switching applications by providing high peak current pulses during the short switching intervals. The driver is available with either TTL or CMOS input thresholds. Internal circuitry provides an under-voltage lockout function by holding the output low until the supply voltage is within the operating range. In addition, the drivers feature matched internal propagation delays between A and B channels for applications requiring dual gate drives with critical timing, such as synchronous rectifiers. This enables connecting two drivers in parallel to effectively double the current capability driving a single MOSFET.The FAN322X drivers incorporate MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability.The FAN3226 offers two inverting drivers and the FAN3227 offers two non-inverting drivers. Each device has dual independent enable pins that default to ON if not connected. In the FAN3228 and FAN3229, each channel has dual inputs of opposite polarity, which allows configuration as non-inverting or inverting with an optional enable function using the second input. If one or both inputs are left unconnected, internal resistors bias the inputs such that the output is pulled low to hold the power MOSFET off." |
FAN3229T_F085CMOS input, dual inverting or non-inverting output, peak 3A sink, 3A source current Low-Side Gate Driver | PMIC | 8 | Active | The FAN3226-29 family of dual 2 A gate drivers is designed to drive N-channel enhancement-mode MOSFETs in low-side switching applications by providing high peak current pulses during the short switching intervals. The driver is available with either TTL or CMOS input thresholds. Internal circuitry provides an under-voltage lockout function by holding the output low until the supply voltage is within the operating range. In addition, the drivers feature matched internal propagation delays between A and B channels for applications requiring dual gate drives with critical timing, such as synchronous rectifiers. This enables connecting two drivers in parallel to effectively double the current capability driving a single MOSFET.The FAN322X drivers incorporate MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability.The FAN3226 offers two inverting drivers and the FAN3227 offers two non-inverting drivers. Each device has dual independent enable pins that default to ON if not connected. In the FAN3228 and FAN3229, each channel has dual inputs of opposite polarity, which allows configuration as non-inverting or inverting with an optional enable function using the second input. If one or both inputs are left unconnected, internal resistors bias the inputs such that the output is pulled low to hold the power MOSFET off. |
FAN324160V Smart Dual-Coil Relay Drivers | Integrated Circuits (ICs) | 1 | Active | The FAN324x family includes dual high-current relay drivers designed to drive dual-coil polarized latching relays that connect and disconnect power in smart electronic meters and solar inverter applications.The output of the FAN324x is rated for operation with supply rails from 8 V to 60 V. The filter / timer block prevents inadvertent switching from noisy input signals by providing input-pulse qualification (tQUAL) and maximum output pulse width limit (tMAX). The parameters are factory adjustable and additional configurations are available. XOR input protection is also provided so that both outputs are prevented from being on at the same time. Under-Voltage Lockout (UVLO) function disables the outputs until the supply voltage is within the operating range.The FAN324x has two separate driver channels with non-inverting logic. One enable / disable pin allows shutdown of both channels, independent of the input signals. Internal thermal shutdown function is provided for thermal protection. |
FAN3268Low-Voltage 18V PMOS-NMOS Bridge Driver | Integrated Circuits (ICs) | 1 | Active | The FAN3268 dual 2A gate driver is optimized to drive a high-side P-channel MOSFET and a low-side N-channel MOSFET in motor control applications operating from a voltage rail up to 18V. The driver has TTL input thresholds and provides buffer and level translation functions from logic inputs. Internal circuitry provides an under-voltage lockout function that prevents the output switching devices from operating if the VDD supply voltage is below the operating level. Internal 100kΩ resistors bias the non-inverting output low and the inverting output to VDDto keep the external MOSFETs off during startup intervals when logic control signals may not be present. The FAN3268 driver incorporates MillerDrive™ architecture for the final output stage. This bipolar-MOSFET combination provides high current during the Miller plateau stage of the MOSFET turn-on / turn-off process to minimize switching loss, while providing rail-to-rail voltage swing and reverse current capability. The FAN3268 has two independent enable pins that default to on if not connected. If the enable pin for non-inverting channel A is pulled low, OUTA is forced low; if the enable pin for inverting channel B is pulled low, OUTB is forced high. If an input is left unconnected, internal resistors bias the inputs such that the external MOSFETs are off. |
| Audio Amplifiers | 5 | Active | ||
| Development Boards, Kits, Programmers | 1 | Active | ||
FAN3988USB/Charger and Over-Voltage Detection Device | Power Management (PMIC) | 2 | Obsolete | The FAN3988 is a USB-connection-monitoring device used to determine if a standard USB device or a battery-charging device is connected.The FAN3988 sets the FLAG1 pin to logic HIGH or LOW as an indicator to the system controller that a standard USB device or a charger is connected to the USB port. The FAN3988 also monitors the VBUSfor over- or under-voltage conditions. The FLAG2 pin is set LOW if VBUSis less than 3.3 V or greater than 6.0 V.The FAN3988 is packaged in a very small 6-lead MLP package suitable for small board space applications, such as mobile phones. |
FAN4010Current Sensor Amplifier, High-Side | Integrated Circuits (ICs) | 1 | Obsolete | The FAN4010 is a high-side current sensor amplifier designed for battery-powered systems. Using the FAN4010 for high-side power-line monitoring does not interfere with the battery charger’s ground path. The FAN4010 is designed for portable PCs, cellular phones, and other portable systems where battery/DC power-line monitoring is critical.To provide a high level of flexibility, the FAN4010 functions with an external sense resistor to set the range of load current to be monitored. It has a current output that can be converted to a ground-referred voltage with a single resistor, accommodating a wide range of battery voltages and currents. The FAN4010 features allow it to be used for gas gauging as well as uni-directional or bi-directional current monitoring. |