Zenode.ai Logo
Beta
Product dimension image
Discrete Semiconductor Products

DTA124EE3HZGTL

Active
Rohm Semiconductor

DIGITAL TRANSISTORS PNP, SOT-416, R1=R2 POTENTIAL DIVIDER TYPE DIGITAL TRANSISTOR (BIAS RESISTOR BUILT-IN TRANSISTOR)

Deep-Dive with AI

Search across all available documentation for this part.

Product dimension image
Discrete Semiconductor Products

DTA124EE3HZGTL

Active
Rohm Semiconductor

DIGITAL TRANSISTORS PNP, SOT-416, R1=R2 POTENTIAL DIVIDER TYPE DIGITAL TRANSISTOR (BIAS RESISTOR BUILT-IN TRANSISTOR)

Technical Specifications

Parameters and characteristics for this part

SpecificationDTA124EE3HZGTL
Current - Collector (Ic) (Max) [Max]100 mA
Current - Collector Cutoff (Max) [Max]500 nA
DC Current Gain (hFE) (Min) @ Ic, Vce [Min]56
Frequency - Transition250 MHz
GradeAutomotive
Mounting TypeSurface Mount
Package / CaseSOT-416, SC-75
Power - Max [Max]150 mW
QualificationAEC-Q101
Resistor - Base (R1)22 kOhms
Resistor - Emitter Base (R2)22 kOhms
Supplier Device PackageEMT3
Transistor TypePNP - Pre-Biased
Vce Saturation (Max) @ Ib, Ic300 mV
Voltage - Collector Emitter Breakdown (Max) [Max]50 V

DTA124 Series

PNP, SOT-723, R1=R2 Potential Divider Type Digital Transistor (Bias Resistor Built-in Transistor) for automotive

PartCurrent - Collector Cutoff (Max) [Max]QualificationVoltage - Collector Emitter Breakdown (Max) [Max]Resistor - Base (R1)Power - Max [Max]Frequency - TransitionGradeTransistor TypeMounting TypeDC Current Gain (hFE) (Min) @ Ic, Vce [Min]Resistor - Emitter Base (R2)Package / CaseCurrent - Collector (Ic) (Max) [Max]Vce Saturation (Max) @ Ib, IcSupplier Device Package
ONSEMI NSVP264SDSF3T1G
Rohm Semiconductor
500 nA
AEC-Q101
50 V
22 kOhms
200 mW
250 MHz
Automotive
PNP - Pre-Biased
Surface Mount
56
22 kOhms
SC-70
SOT-323
100 mA
300 mV
UMT3
Product thumbnail image
Rohm Semiconductor
500 nA
50 V
22 kOhms
200 mW
250 MHz
PNP - Pre-Biased
Surface Mount
56
22 kOhms
SC-59
SOT-23-3
TO-236-3
30 mA
300 mV
SMT3
RSF015N06FRATL
Rohm Semiconductor
500 nA
50 V
22 kOhms
200 mW
250 MHz
PNP - Pre-Biased
Surface Mount
68
47 kOhms
SC-70
SOT-323
50 mA
300 mV
UMT3
SC-72-3_SPT
Rohm Semiconductor
500 nA
50 V
22 kOhms
250 MHz
PNP - Pre-Biased
Through Hole
56
22 kOhms
SC-72 Formed Leads
30 mA
300 mV
SPT
SMT3
Rohm Semiconductor
500 nA
50 V
22 kOhms
200 mW
250 MHz
PNP - Pre-Biased
Surface Mount
100
SC-59
SOT-23-3
TO-236-3
100 mA
300 mV
SMT3
2SA2018TL
Rohm Semiconductor
500 nA
AEC-Q101
50 V
22 kOhms
150 mW
250 MHz
Automotive
PNP - Pre-Biased
Surface Mount
68
47 kOhms
SC-75
SOT-416
100 mA
300 mV
EMT3
Product dimension image
Rohm Semiconductor
500 nA
AEC-Q101
50 V
22 kOhms
150 mW
250 MHz
Automotive
PNP - Pre-Biased
Surface Mount
56
22 kOhms
SC-75
SOT-416
100 mA
300 mV
EMT3
TOREX XP261N70027R-G
Rohm Semiconductor
500 nA
AEC-Q101
50 V
22 kOhms
150 mW
250 MHz
Automotive
PNP - Pre-Biased
Surface Mount
68
47 kOhms
SOT-723
100 mA
300 mV
VMT3
TOREX XP261N70027R-G
Rohm Semiconductor
500 nA
AEC-Q101
50 V
22 kOhms
150 mW
250 MHz
Automotive
PNP - Pre-Biased
Surface Mount
56
22 kOhms
SOT-723
100 mA
300 mV
VMT3
RSF015N06FRATL
Rohm Semiconductor
500 nA
50 V
22 kOhms
200 mW
250 MHz
PNP - Pre-Biased
Surface Mount
56
22 kOhms
SC-70
SOT-323
30 mA
300 mV
UMT3

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyCut Tape (CT) 1$ 0.40
10$ 0.28
100$ 0.14
500$ 0.12
1000$ 0.09
Digi-Reel® 1$ 0.40
10$ 0.28
100$ 0.14
500$ 0.12
1000$ 0.09
Tape & Reel (TR) 3000$ 0.07
6000$ 0.07
9000$ 0.06
30000$ 0.06
75000$ 0.05
150000$ 0.05
MouserN/A 1$ 0.32
10$ 0.24
100$ 0.14
500$ 0.09
1000$ 0.07
3000$ 0.06
6000$ 0.05
9000$ 0.05
24000$ 0.04

Description

General part information

DTA124 Series

DTA124EU3HZG is an digital transistor (Resistor built-in type transistor). Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors. This is a high-reliability product of automotive grade qualified to AEC-Q101.

Documents

Technical documentation and resources

DTA124EE3HZGTL Datasheet (PDF)

Datasheet

Types and Features of Transistors

Application Note

What Is Thermal Design

Thermal Design

Explanation for Marking

Package Information

List of Transistor Package Thermal Resistance

Thermal Design

How to Use LTspice® Models

Schematic Design & Verification

Importance of Probe Calibration When Measuring Power: Deskew

Schematic Design & Verification

Compliance of the RoHS directive

Environmental Data

PCB Layout Thermal Design Guide

Thermal Design

Part Explanation

Application Note

Basics of Thermal Resistance and Heat Dissipation

Thermal Design

Precautions When Measuring the Rear of the Package with a Thermocouple

Thermal Design

Measurement Method and Usage of Thermal Resistance RthJC

Thermal Design

Package Dimensions

Package Information

Calculation of Power Dissipation in Switching Circuit

Schematic Design & Verification

Taping Information

Package Information

Notes for Temperature Measurement Using Forward Voltage of PN Junction

Thermal Design

Condition of Soldering / Land Pattern Reference

Package Information

About Export Regulations

Export Information

Overview of ROHM's Simulation Models(for ICs and Discrete Semiconductors)

Technical Article

About Flammability of Materials

Environmental Data

Notes for Calculating Power Consumption:Static Operation

Thermal Design

Method for Monitoring Switching Waveform

Schematic Design & Verification

Two-Resistor Model for Thermal Simulation

Thermal Design

Moisture Sensitivity Level - Transistors

Package Information

Anti-Whisker formation - Transistors

Package Information

Temperature derating method for Safe Operating Area (SOA)

Schematic Design & Verification

Method for Calculating Junction Temperature from Transient Thermal Resistance Data

Thermal Design

What is a Thermal Model? (Transistor)

Thermal Design

Impedance Characteristics of Bypass Capacitor

Schematic Design & Verification

Certificate of not containing SVHC under REACH Regulation

Environmental Data

Notes for Temperature Measurement Using Thermocouples

Thermal Design

How to Use LTspice® Models: Tips for Improving Convergence

Schematic Design & Verification