Zenode.ai Logo
Beta
SOIC (D)
Integrated Circuits (ICs)

MAX660M/NOPB

Active
Texas Instruments

10 KHZ/80 KHZ SWITCHED CAPACITOR VOLTAGE CONVERTER

Deep-Dive with AI

Search across all available documentation for this part.

SOIC (D)
Integrated Circuits (ICs)

MAX660M/NOPB

Active
Texas Instruments

10 KHZ/80 KHZ SWITCHED CAPACITOR VOLTAGE CONVERTER

Technical Specifications

Parameters and characteristics for this part

SpecificationMAX660M/NOPB
Current - Output100 mA
Frequency - Switching80 kHz, 10 kHz
FunctionRatiometric
Mounting TypeSurface Mount
Number of Outputs1
Operating Temperature [Max]85 °C
Operating Temperature [Min]-40 °C
Output ConfigurationPositive or Negative
Output Type1.81 mOhm
Package / Case8-SOIC
Package / Case [x]0.154 in
Package / Case [y]3.9 mm
Supplier Device Package8-SOIC
Synchronous RectifierFalse
Voltage - Input (Max) [Max]5.5 V
Voltage - Input (Min) [Min]1.5 V
Voltage - Output (Min/Fixed) [Max]2Vin
Voltage - Output (Min/Fixed) [Min]-Vin

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyTube 1$ 1.77
10$ 1.59
95$ 1.28
285$ 1.20
570$ 1.05
1045$ 0.87
2565$ 0.81
5035$ 0.78
Texas InstrumentsTUBE 1$ 1.47
100$ 1.13
250$ 0.83
1000$ 0.59

Description

General part information

MAX660 Series

The MAX660 CMOS charge-pump voltage converter is a versatile unregulated switched-capacitor inverter or doubler. Operating from a wide 1.5-V to 5.5-V supply voltage, the MAX660 uses two low-cost capacitors to provide 100 mA of output current without the cost, size and EMI related to inductor-based converters. With an operating current of only 120 µA and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery-powered systems. MAX660 devices can be operated directly in parallel to lower output impedance, thus providing more current at a given voltage.

The FC (frequency control) pin selects between a nominal 10-kHz or 80-kHz oscillator frequency. The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the MAX660 with an external clock up to 150 kHz. Through these methods, output ripple frequency and harmonics may be controlled.

Additionally, the MAX660 may be configured to divide a positive input voltage precisely in half. In this mode, input voltages as high as 11 V may be used.