Zenode.ai Logo
Beta
RQ3N060ATTB1
Discrete Semiconductor Products

RQ3N060ATTB1

Active
Rohm Semiconductor

MOSFET, P-CHANNEL, 80V, 18A, HSMT ROHS COMPLIANT: YES

Deep-Dive with AI

Search across all available documentation for this part.

RQ3N060ATTB1
Discrete Semiconductor Products

RQ3N060ATTB1

Active
Rohm Semiconductor

MOSFET, P-CHANNEL, 80V, 18A, HSMT ROHS COMPLIANT: YES

Technical Specifications

Parameters and characteristics for this part

SpecificationRQ3N060ATTB1
Current - Continuous Drain (Id) @ 25°C18 A, 6 A
Drain to Source Voltage (Vdss)80 V
Drive Voltage (Max Rds On, Min Rds On)10 V, 6 V
FET TypeP-Channel
Gate Charge (Qg) (Max) @ Vgs50 nC
Input Capacitance (Ciss) (Max) @ Vds2240 pF
Mounting TypeSurface Mount
Operating Temperature150 °C
Package / Case8-PowerVDFN
Power Dissipation (Max)2 W, 20 W
Rds On (Max) @ Id, Vgs52 mOhm
Supplier Device Package [custom]8-HSMT
Supplier Device Package [x]3.2
Supplier Device Package [y]3
TechnologyMOSFET (Metal Oxide)
Vgs (Max)20 V

Pricing

Prices provided here are for design reference only. For realtime values and availability, please visit the distributors directly

DistributorPackageQuantity$
DigikeyN/A 2880$ 2.02
NewarkEach (Supplied on Cut Tape) 1$ 1.59
10$ 1.07
25$ 1.00
50$ 0.93
100$ 0.86
250$ 0.78
500$ 0.71
1000$ 0.62

Description

General part information

RQ3N060AT Series

RQ3N060AT is a power MOSFET with low-on resistance and High power package, suitable for Switching and Motor drives applications.

Documents

Technical documentation and resources

RQ3N060ATTB1 | Datasheet

Datasheet

How to Use LTspice® Models: Tips for Improving Convergence

Schematic Design & Verification

PCB Layout Thermal Design Guide

Thermal Design

About Flammability of Materials

Environmental Data

Anti-Whisker formation - Transistors

Package Information

Compliance of the RoHS directive

Environmental Data

MOSFET Gate Drive Current Setting for Motor Driving

Technical Article

Notes for Temperature Measurement Using Thermocouples

Thermal Design

List of Transistor Package Thermal Resistance

Thermal Design

About Export Regulations

Export Information

What is a Thermal Model? (Transistor)

Thermal Design

MOSFET Gate Resistor Setting for Motor Driving

Technical Article

What Is Thermal Design

Thermal Design

Impedance Characteristics of Bypass Capacitor

Schematic Design & Verification

Method for Monitoring Switching Waveform

Schematic Design & Verification

HSMT8(TB1) Explanation for Marking

Package Information

How to Use LTspice® Models

Schematic Design & Verification

HSMT8(TB1) Taping Information

Package Information

Calculation of Power Dissipation in Switching Circuit

Schematic Design & Verification

Moisture Sensitivity Level - Transistors

Package Information

Method for Calculating Junction Temperature from Transient Thermal Resistance Data

Thermal Design

Overview of ROHM's Simulation Models(for ICs and Discrete Semiconductors)

Technical Article

RQ3N060AT ESD Data

Characteristics Data

P-channel Power MOSFETs selection guide

Technical Article

Types and Features of Transistors

Application Note

Condition of Soldering / Land Pattern Reference

Package Information

Part Explanation

Application Note

Two-Resistor Model for Thermal Simulation

Thermal Design

Measurement Method and Usage of Thermal Resistance RthJC

Thermal Design

HSMT8(TB1) Dimension

Package Information

Notes for Calculating Power Consumption:Static Operation

Thermal Design

Basics of Thermal Resistance and Heat Dissipation

Thermal Design

Importance of Probe Calibration When Measuring Power: Deskew

Schematic Design & Verification

Temperature derating method for Safe Operating Area (SOA)

Schematic Design & Verification

Notes for Temperature Measurement Using Forward Voltage of PN Junction

Thermal Design

Precautions When Measuring the Rear of the Package with a Thermocouple

Thermal Design