
Catalog
High Speed CAN Transceiver with Short Loop Delay
Key Features
• Qualified for Automotive ApplicationsDrop-In Improved Replacement for the PCA82C250 and PCA82C251Bus-Fault Protection of ±36 VMeets or Exceeds ISO 11898Signaling Rates(1)up to 1 MbpsHigh Input Impedance Allows up to 120 SN65HVD251 Nodes on a BusBus Pins ESD Protection Exceeds 9 kV (HBM)Unpowered Node Does Not Disturb the BusLow-Current Standby Mode: 200 µA TypicalThermal Shutdown ProtectionGlitch-Free Power-Up and Power-Down Bus Protection for Hot PluggingDeviceNet™ Vendor ID #806APPLICATIONSCAN Data BusesIndustrial AutomationDeviceNet Data BusesSmart Distributed Systems (SDS™)SAE J1939 Standard Data Bus InterfaceNMEA 2000 Standard Data Bus InterfaceISO 11783 Standard Data Bus Interface(1)The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second).All trademarks are the property of their respective owners.Qualified for Automotive ApplicationsDrop-In Improved Replacement for the PCA82C250 and PCA82C251Bus-Fault Protection of ±36 VMeets or Exceeds ISO 11898Signaling Rates(1)up to 1 MbpsHigh Input Impedance Allows up to 120 SN65HVD251 Nodes on a BusBus Pins ESD Protection Exceeds 9 kV (HBM)Unpowered Node Does Not Disturb the BusLow-Current Standby Mode: 200 µA TypicalThermal Shutdown ProtectionGlitch-Free Power-Up and Power-Down Bus Protection for Hot PluggingDeviceNet™ Vendor ID #806APPLICATIONSCAN Data BusesIndustrial AutomationDeviceNet Data BusesSmart Distributed Systems (SDS™)SAE J1939 Standard Data Bus InterfaceNMEA 2000 Standard Data Bus InterfaceISO 11783 Standard Data Bus Interface(1)The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second).All trademarks are the property of their respective owners.
Description
AI
The HVD251 is intended for use in applications employing the Controller Area Network (CAN) serial communication physical layer in accordance with the ISO 11898 Standard. The HVD251 provides differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 megabits per second (Mbps).
Designed for operation in harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V. Also featured are overtemperature protection as well as –7-V to 12-V common-mode range, and tolerance to transients of ±200 V. The transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.
Rs, pin 8, selects one of three different modes of operation: high-speed, slope control, or low-power mode. The high-speed mode of operation is selected by connecting pin 8 to ground, allowing the transmitter output transistors to switch as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8; the slope is proportional to the pin’s output current. Slope control with an external resistor value of 10 kΩ gives about 15-V / µs slew rate; 100 kΩ gives about 2-V/µs slew rate.
If a high logic level is applied to the Rs pin 8, the device enters a low-current standby mode where the driver is switched off and the receiver remains active. The local protocol controller returns the device to the normal mode when it transmits to the bus.
The HVD251 is intended for use in applications employing the Controller Area Network (CAN) serial communication physical layer in accordance with the ISO 11898 Standard. The HVD251 provides differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 megabits per second (Mbps).
Designed for operation in harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V. Also featured are overtemperature protection as well as –7-V to 12-V common-mode range, and tolerance to transients of ±200 V. The transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.
Rs, pin 8, selects one of three different modes of operation: high-speed, slope control, or low-power mode. The high-speed mode of operation is selected by connecting pin 8 to ground, allowing the transmitter output transistors to switch as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8; the slope is proportional to the pin’s output current. Slope control with an external resistor value of 10 kΩ gives about 15-V / µs slew rate; 100 kΩ gives about 2-V/µs slew rate.
If a high logic level is applied to the Rs pin 8, the device enters a low-current standby mode where the driver is switched off and the receiver remains active. The local protocol controller returns the device to the normal mode when it transmits to the bus.